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Abstract

Process faults may be detected on-line using existing measurements based upon modelling that is entirely data driven. A multivariate

statistical model is developed and used for fault diagnosis of an industrial fed-batch fermentation process. Data from several (25) batches

are used to develop a model for cultivation behaviour. This model is validated against 13 data sets and demonstrated to explain a signi®cant

amount of variation in the data. The multivariate model may directly be used for process monitoring. With this method faults are detected in

real time and the responsible measurements are directly identi®ed. The fault detection and identi®cation is enabled through inspection of a

few simple plots. Thus, the presented methodology allows the process operator to actively monitor data from several cultivations

simultaneously. # 1999 Elsevier Science S.A. All rights reserved.

Keywords: Batch processes; Statistical process monitoring (SPM); Process chemometrics; Projection to latent structures (PLS); Principal component analysis

(PCA)

1. Introduction

Batch processes are usually very dif®cult to model due to

the circumstances under which they are used. Short runs and

large batch to batch differences in process conditions make it

dif®cult and time consuming to develop ®rst principles

models for the versatile reactor that the batch reactor

actually is. Statistical process monitoring (SPM) is com-

monly used for monitoring continuous processes, where

statistical methods are used to monitor that process variables

are kept at a stationary level [1]. Fed-batch (or semi-batch)

processes are, however, non-stationary and the process

variables are, therefore, not constant. Thus, it is more

dif®cult to develop a model for normal behaviour and to

detect deviations from standard operation.

This paper shows an application of a multivariate statis-

tical method for fault diagnosis. The method uses data which

are obtained from existing standard measurements from an

industrial process. Hence, no measurements have to be

added in order to establish the described modelling method

than normally would exist in equipment utilised by the

fermentation process industries. When advanced analytical

equipment is available (e.g., NIR spectra of the broth) it can

be included, though. Data are used to develop a model of the

normal behaviour of the process. Process knowledge enters

the model development process when the measurements and

the types of batches are speci®ed and selected. The devel-

oped model can be used for on-line fault diagnosis and it is

also demonstrated that the model can be used for prediction

of the product concentration at the end of the batch.

A short introduction to the process described in this paper

is given in Section 2. The crucial part of the process

chemometrical way of modelling is the availability of

process data and as long as this requirement is ful®lled

the methods can be used for any process. The data handling

is described in Section 3. The results of applying the meth-

ods to a fed-batch fermentation are described in Section 4

and the paper ends with a discussion and conclusions. A list

of symbols is given in Appendix A.

2. Process description

The process investigated in this paper is an industrial fed-

batch fermentation process where a Bacillus species pro-

duces enzymes. In this article the focus is on the main

fermentor where the product is produced. The previous

steps, spore propagation and seed tank, which have as

purpose to produce biomass will not be dealt with, but

the methods can be used for those as well to ascertain

consistency and error propagation between steps.
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The operating procedure for the modelled fed-batch

fermentation is to start with a small amount of biomass

and substrate in the main fermentor. When most of the

initially added substrate has been consumed by the micro-

organisms the substrate feed is started. This operating

procedure is used in order to keep the substrate con-

centration low during the fermentation. A low substrate

concentration in the fermentor is necessary for achieving a

high product formation rate due to the catabolite repressor

effect.

The fed-batch operating procedure leads to a highly

nonlinear process behaviour. Small changes in concentra-

tions or ¯ows can have a large effect on the kinetics of the

internal reactions in the cells leading to large batch to batch

differences in cell growth and product formation. Almost

every key variable (volume, biomass, product concentra-

tion, etc.) is changing as the process progresses. This

behaviour distinguishes batch and fed-batch processes from

continuous processes where process control can be per-

formed by maintaining key variables constant. In fermenta-

tion processes it is customary to keep the pH and

temperature level constant in order to give the cells the

best possible conditions for making the desired product.

This is also the case for the process described in this paper

and the pH and temperature data, therefore, show very little

variation.

The nonlinear behaviour together with limited duration of

the process makes it dif®cult to develop dynamic models of

the system. Such modelling requires detailed knowledge

about the microorganisms their metabolism and reaction

rates and quantitative data from carefully planned experi-

ments speci®c to the particular fermentation. Due to the

large number of different microorganisms and products used

by industry the effort that is needed to develop dynamic

models for simulation, fault diagnosis and control seems too

large to be overcome in the near future.

Due to the lack of models for model-based control the

standard operating procedure of fermentation processes is to

run with a predetermined feed pro®le that has been deter-

mined as the result of multiple optimization experiments,

where high productivity and high reproducibility are the

major objectives in these experiments. The optimization

experiments can be very versatile when trying to optimise

operating procedures, substrates and the microorganisms

itself, but also takes long time. This is an ongoing task for

most processes.

As a result of disturbances and differences in initial

conditions the measurement trajectories can deviate from

the expected optimal course. If the deviations are not

compensated for the batch may have a reduced performance

in terms of lower yield and production of unwanted by-

products. On the other hand, many upsets of the process that

can be seen through changes in the measurements will not

have an effect on the quality of the process. In order to detect

a fault, it is of course necessary that the fault affects, directly

or indirectly, the measurements.

Abrupt, gross faults in single variables can easily and

reliably be detected by a conventional process control

system. Drift of variables and faults involving multiple

variables are not easily detected. These more complicated

faults, even if they are small, can have a large effect on the

quality of the process; an effect that is dif®cult to predict

without advanced tools.

It is conventionally up to the process operator to deter-

mine when deviations are unacceptably large and will have

an effect on the product quality and the productivity. The

reliability of this highly manual procedure depends on the

training that the process operator has received, his experi-

ence and the character and number of processes that he has

to supervise simultaneously.

The aim of the methods presented in this paper is to

provide the process operators with a tool for detection and

isolation of faults by limiting the amount of data that the

process operator has to monitor in order to evaluate the

present and future operation of the process. This tool is

especially bene®cial when process operators are monitoring

several processes at the same time.

3. Data analysis

A set of on-line measurements are obtained from the

process at regular sample intervals. These measurements

have been stored for many past fermentations forming a

database of historical information about the process. The

measurements available for the considered process are

shown in Table 1. Note that all the measurements are

unsophisticated standard measurements. Thus, no advanced

or expensive measurement devices has to be installed in

order to make the methods work; the particular type of

measurement is not important as long as the measurements

represent the state of the process.

The model is entirely data based as opposed to conven-

tional ®rst principles modelling. It is up to the modeller to

choose data in a way such that the data describes the

behaviour of the system. The selection of the correct data

for the modelling work is the most important step of the

modelling phase. When a process data base already exists

the task is reduced to selection among the data. Better

results can usually be obtained if the data are obtained from

designed experiments, but such an approach is costly and

time consuming and is not considered in this paper.

Designed experiment are more valuable and sometimes

Table 1

On-line measurements obtained from the fermentation process

1 Total amount of substrate 2 Agitator power input

3 Total amount of antifoam 4 Weight

5 pH 6 Temperature

7 Dissolved oxygen 8 Air flow

9 CO2% in off-gas 10 O2% in off-gas
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essential when optimization experiments are performed on a

process in order to perturb key variables.

The data used in this paper are obtained from a historical

data base. It is desired that the model will work for all future

batches. Therefore, a model is built using all available data

sets (except for the data sets used for validation). A few of

these data sets had to be left out because the course of the

batches are so incompatible with the other batches that a

single model cannot be formed that includes the variation of

all the batches. The nonconforming data are left out in order

to develop a model of the desired behaviour of the process.

When a new batch is monitored one can then investigate if

the batch is operating within the window of the desired

behaviour given by the model. If the batch deviates too

much one can say that a fault has occurred and that some

action must be taken. As the model has been built on

historical data where process faults have not been treated

as suggested in this paper some faults are unfortunately

allowed to persist. The goal is that once fault diagnosis has

been implemented and the process variation has decreased,

a new and better model will be developed leading to an ever

improving process as this iteration progresses.

Other types of models can be developed that describe

more specialised types of behaviour. Separate models can be

built using data from batches that have a given high or low

yield. Models can be built using data from batches that have

experienced a certain type of fault. Building such specia-

lised models gives higher speci®city towards the type of

error, but at the same time the speci®city towards previously

unseen errors is diminished.

Data from the batch and fed-batch processes can con-

veniently be put into a three-way matrix X (I � J � K). I is

the number of batches, J is the number of variables (10), and

K is the number of samples from each batch (114). The

numbers in parentheses refer the numbers actually used in

this paper. The size can vary by orders of magnitude

depending on the process duration and available measure-

ments when other processes are modelled.

The matrix X can be unfolded to a two-way matrix, see

Fig. 1. This two-way matrix is called X (I � KJ). For each

fermentation (a row in X) a quality measure is recorded and

stored in a matrix Y. The measure used here will be the ®nal

product concentration, but one could also use, e.g., the

productivity. Each column of X corresponds to a certain

variable at a certain point in time. If the process is carried

out following a predetermined feed pro®le it is expected

that the trajectories of the measurements are similar and

that the mean value of a variable at a certain point in time

can be used as a reference value for future processes.

The goal of the monitoring is to observe and minimise

deviations from this reference value in future batches. Thus,

to facilitate the analysis the columns are centred and scaled

to unit variance.

The matrix X is rather large, but the columns of X are not

independent. They describe similar events in the process and

the dimension of the space spanned by X is usually very low.

Thus, by using a multivariate statistical technique to reduce

the dimensionality of the variable space the problem of

describing the process becomes much simpler to handle.

Principal component analysis (PCA) is frequently used for

this purpose and is recommended if no quality variables are

available, which is frequently the case for many biotechno-

logical processes. When quality variables are available one

can use principal component regression (PCR) or preferably

projection to latent structure (PLS) which is a linear regres-

sion method that optimally utilises the information in X and

Y at the same time [2].

When the variable space is compressed using either PCA

or PLS the process can be monitored in a low-dimensional

space using simple plots [3,4]. The modelling methods

requires data from several batches in order to produce a

good model. Sometimes 20 batches are suf®cient, but 50 or

even 100 can be necessary if the dimensionality of the

model space is large. The number can be reduced if some,

possibly designed, experiments have been carried out that

®lls the model space in an ef®cient way, but this is a rare

possibility for production scale fermentations.

In the present application a quality variable is available

for the described process and, therefore, a PLS model will

be developed. PLS is de®ned by a bilinear model that is used

to model the relationship between X and Y

X � TWT � E; Y � UQT � F; ua � bata: (1)

PLS maximises the covariance between ua and ta and the

number of components A (number of columns in T) is

chosen such that E and F are small in some sense. The

Fig. 1. Unfolding of a three-way matrix to form a two-way matrix. X

contains the on-line variables and Y some measure of the quality of the

process (here: the final product concentration). The principle behind

process chemometrics is shown in the lower part of the figure for a single

variable. Every time a new measurement is obtained it will be compared to

the expected level. If the deviation is too large (above upper (UL) or below

lower (LL) limits) the process is behaving abnormally and the process

operator should take action.
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data are in other words reduced to a number of scores (either

T or U) that lie in a low dimensional space of the data, but

describes a large fraction of the variation of the data. The

expression in (1) can be rewritten as

Y � XB� F�: (2)

This expression is in many cases easier to work with. The

regression parameter matrix is given by

B � W�PTW�ÿ1QT; (3)

where the loading matrices W, P and Q are determined by

the PLS algorithm [5,6]. Y can be predicted using:

Ŷ � XB � XW�PTW�ÿ1QT (4)

Ŷ � TQT: (5)

The model can be used for calculating a vector t (a t-score)

for a new data set Xnew

tnew � �XnewW�PTW�ÿ1�T: (6)

This expression can be used only when all data from a

fermentation is available. For on-line purposes a full X
matrix has to be constructed. In this paper X will be

constructed by using all of the available information col-

lected up to the current time and the remaining part of X will

be ®lled with a copy of the most recently obtained measure-

ment. This method results in good fault detection properties

and reasonably well-behaved estimation of Y as well. This

way of ®lling X corresponds to predicting what would

happen if a fault is allowed to remain unchanged for the

remaining duration of the batch and is a way to evaluate the

seriousness of faults. This procedure is justi®ed because the

process dynamics become increasingly slower as the tank is

®lled and less change of the concentration variables is

observed especially as the product concentration stabilises

during the last part of the batch.

3.1. Fault diagnosis

Fault diagnosis consists of three steps: fault detection,

isolation and identi®cation (FDII). The methods presented

in this section will readily detect faults and isolate the

measurements that are behaving abnormally and the meth-

ods may facilitate the identi®cation of the fault, i.e., to

determine the physical origin of the fault in the process.

For detection, two statistics, the T2
f and the standard

prediction error, can be calculated. The T2
f statistic (based

on the Hotelling T2 statistic [7]) is calculated using the

scores

T2
f � tTnewSÿ1tnew � A�I2 ÿ 1�

I�I ÿ A� FA;IÿA; (7)

where S is the covariance matrix of the t-scores contained in

the matrix T calculated during the model development [8], I

is the number of batches used for modelling and A is the

number of components. F denotes the F distribution.

The squared prediction error (SPE) is calculated by

SPEk �
XJk

r��kÿ1�J�1

eT
r er; (8)

where er is the rth column of the matrix E � Xnew ÿ tnewPT.

In the simple case where there is only one new batch to be

considered E is a row vector and er is a scalar and eT
r er

condenses into e2
r . The distribution of the SPE can be

approximated by a weighted �2 distribution SPEk �
�vk=2mk��2

2 m 2
k
=vk

, where mk and vk are the mean and variance

of the SPE obtained for the data set used for the model

development at time instant k [4].

A fault is detected whenever the T2
f statistic or the SPE

exceeds, e.g., a 95% con®dence limit. The 95% limit is

usually taken to be a warning level only and action is taken

when the statistic exceeds a 99% limit. The T2
f statistic

reveals faults that can be described by the model. The SPE

will show if a totally new event is occurring in the process.

This measure includes unusual variation of the controlled

variables stabilised by simple control.

The process can also be monitored using the scores in a

so-called score plot. Usually the number of components is

low (2±3) and, therefore, a single plot is usually suf®cient to

display the state of the process. If the model contains more

than two components one can either construct three-dimen-

sional plots or make several two-dimensional plots to show

the variation. Con®dence limits can be established using the

ellipsis de®ned by Eq. (7). These limits are suitable when

developing the model since the data used in the development

are all from similar batches (in some sense). When the

model has been based on only a few data sets it is often seen

that the ellipses are not ®lled evenly. This can be due to

violation of the normality assumptions of the scores or

simply a result of basing the model on historic data that

do not cover the entire score space because the data were

obtained under normal operating conditions. It has been

proposed that kernel density estimates of the con®dence

limits can be bene®cial when monitoring the process [9].

Using kernel density estimates for the limits it is assured that

con®dence is given to those scores that are in an area that

actually have been encountered when building the model.

A general estimator for the kernel density can be de®ned

as [10]

f �t� � 1

njHj
XI

i�1

Kd Hÿ1�tÿ ti�
ÿ �

; (9)

where |H| is the absolute value of the determinant of the

matrix H, which is a bandwidth matrix. Kd is the multi-

variate kernel function. One way of creating Kd from a

univariate kernel K is by using a product kernel

Kd�u� �
Yd

j�1

K�uj�: (10)

The Gaussian kernel K�u� � �2��ÿ1=2
eÿu2=2 will be used
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here. Other kernels may be used, but the resulting con®-

dence bounds do not vary much when other kernels are

chosen. The bandwidth matrix is chosen to be a diagonal

matrix. This complies with the scores being independent.

The bandwidth has to be chosen based on the shape of the

data and the coarseness that is desired in the plot. A default

value for the bandwidth is hi � 1:059siI
ÿ1=5, where si is the

standard deviation of the ith score [10]. For con®dence

limits in the score plots it has been found that the bandwidth

usually has to be slightly larger than the default value

leading to a coarse con®dence region.

4. Experimental results

A model has been developed by carefully selecting data

sets from the historical data base that re¯ect the normal

desired operation of the fermentations. This has been done

by ®rst discarding any batch that has very large undesired or

unusual behaviour compared to the desired batch behaviour

(e.g., because of experiments or infections). When a batch is

very short or very long it is discarded, too. The data suitable

for the model development is truncated such that 114 time

samples are included in the model. As mentioned, the

dynamics of the process become slower towards the end

of the batch and there are usually few corrective measures to

be performed if a fault occurs near the end of a batch,

anyway. An initial model is estimated and batches are

removed from the modelling data set if they are lying

outside a 99% con®dence bound in a score plot using

ellipses as con®dence bounds. The procedure is carried

out iteratively until all batches remain within the 99%

con®dence bound. It is important here to identify why a

batch does not lie within the con®dence bound in order to

make sure that only those batches that are really not con-

forming, are eliminated from the normal data set.

After the reduction in the number of data sets 25 data sets

were used for model development and 13 for validation of

the model. Using the prediction error sum of squares

(PRESS) as validation criterion two components are found

to be suf®cient for describing the relationship between X
and Y. The obtained model uses only 28% of the information

in X, but explains 80% of the variation of Y. The low

percentage of used variation in X is due to the inclusion

of controlled variables that have low variation (e.g., pH and

temperature). These variables are known to have large

in¯uence on the product formation and that is the reason

they are controlled. If the in¯uence of the controlled vari-

ables on the product formation is to be modelled by the PLS

model these variables must be perturbed in designed experi-

ments. These experiments have not been performed since

that would be expected to lead to a decrease in product

formation and gross variation in these variables is not

encountered due to the control. If the PLS model was to

be used entirely for prediction purposes and it is assumed

that the control is perfect the model performance could be

improved by not including the controlled variables in the

model. In the present case we are interested in fault diag-

nosis of the controlled variables, too, and therefore, leave

the controlled variables in the model.

4.1. On-line estimation of final product concentration

Using Eqs. (4)±(6) the ®nal product concentration can be

predicted in real time. Fig. 2 shows the performance of this

method for a low producing fermentation. The data from

this batch, which was used for model validation, but not for

the modelling itself, will be used in the following section.

The ®nal product concentration is 0.40, whereas the average

value for the batches used for model development is 0.46.

Fig. 2 shows that the model is able to predict the ®nal

product concentration within 10% during most of the fer-

mentation except during the interval from 70 to 80, where

there is a large deviation due to a process fault. The accuracy

of the estimation is slightly larger than the accuracy pro-

vided by the lab when chemical analyses are performed.

This deviation can be interpreted further by the fault diag-

nosis as described in the following section.

The T2
f statistic in Fig. 3 plotted as a function of time for

the same batch as in Fig. 2, shows that this particular batch

has a large deviation from t � 70 to t � 80. The slow drift of

the T2
f that can be noted is dif®cult to detect by looking at the

raw measurements. It has already been indicated (in Fig. 2)

that this process drift results in a much lower than average

product concentration at the end of the fermentation. Fig. 2

illustrates the importance of this type of monitoring to

enable the prediction of the consequences of deviations.

The SPE in Fig. 4 indicates that this process is deviating

from the average process almost throughout the entire

fermentation.

Fig. 2. Prediction of final product concentration. The dotted line indicates

the actual product concentration as it was measured at the end of the batch.

If the large fault at t � 70 was allowed to persist throughout the

fermentation the product concentration was estimated to be much lower

than the one actually obtained.
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Contribution plots, which indicate the variables that are

contributing most to the T2
f statistic or the SPE, can easily be

constructed and can, thus, be used in the fault identi®cation

[11,4]. Contribution plots can either be used to ®nd the

change in the contribution from one point in time to another

or the contribution plot can be used to ®nd the deviation of

the current batch when compared to the normal batch

behaviour described by the model. We here choose to look

at the fault which has been detected around t � 70. Fig. 5

shows the change in contribution of the variables from a

point in time just before the fault could be detected in the

SPE and T2
f plots (t � 67) to the point where the fault is at its

highest (t � 73). The ®gure shows that there is a large

change in the contribution of the CO2 and O2 measurements.

Thus, the task of isolating faulty measurement has been

reduced to looking only at a few plots that show that a fault

has occurred and contribution plots to identify the variables

that contribute to the fault.

4.2. Score plots

A score plot can be used to monitor the process. Since the

model only contains two components the plot in Fig. 6 is the

only one needed to monitor the major variations of a

normally operating batch. The ®gure shows the variation

of the process in the reduced space of the two components.

The score plot describes the present state of the process

and allows the operator to interpret the development of the

process. Emphasis must be put on the word interpret

Fig. 3. T2
f statistic. Dash-dotted lines indicate 95% and 99% confidence

limits.

Fig. 4. Squared prediction error (SPE). Max value at peak when t � 20 is

about 1400. The dash-dotted line is the 95% and the dotted line is the 99%

confidence limits.

Fig. 5. Contribution plot showing the change of the process from t � 67 to

t � 73. It is seen that the variables CO2 and O2 give highest contribution to

the fault and that they are lower than normal. From the plot of the

predicted final product concentration (Fig. 2), it can be seen that the fault

has a negative effect on the quality.

Fig. 6. Score plot for a faulty batch illustrating the development of the

process in a reduced space. The beginning of the fermentation is marked

with a `o'. The time interval [69;77] (starting with a `*') is shown as solid

lines. The score t1 varies mainly when there are large oscillations in the

temperature. t2 varies mainly when the CO2 and O2 measurements change.

Confidence limits are kernel density estimates.
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because the scores usually lack any direct physical meaning.

One way of interpreting the score plot is to ascribe different

phenomena to the movement of scores. For example, this

model shows large variation of the t2 score when deviations

in the O2 uptake and CO2 production occur. Another way of

®nding a physical relationship is to investigate the loading

matrices, which directly show the relationship between the

measurements and the scores. Both interpretations can be

useful when the behaviour of a batch is to be described and

current or future faults are to be eliminated.

Eq. (5) shows the relationship between the scores and the

dependent variable y as Ŷ � TQT. Since in this case

Q � [0.05 0.08] it can be inferred that batches will have

a higher than average product concentration at the end of the

batch when the score values all are positive, i.e., the scores

are moving around in the upper-right corner of the score

plot.

Score plots can, furthermore, be used as a ®ngerprint of

the batch. Instead of investigating plots of the different

measured variables one can use a score plot for an entire

batch to investigate if something unusual has happened

during the fermentation. Fig. 7 shows such a score plot

of a well-behaved batch. The scores stay in this ®gure close

to the point (0,0) which shows us that this batch did not have

any faults that affected the product concentration. It would

have been much harder to interpret the original measure-

ments due to their time varying nature.

5. Discussion and conclusion

The methods shown above are powerful tools for com-

pressing and displaying process information in a meaningful

way. The methods can be used both for fault diagnosis and

for prediction purposes. It should be noticed that the pre-

dictions are obtained in real time as opposed to wet chemical

analyses and with almost the same accuracy.

Using the demonstrated methods the operator is provided

with a clear view of the process performance. Instead of

watching 10 (correlated) variables at the same time it is

suf®cient to inspect only two simple plots in order to

evaluate the present and future behaviour of the process.

The relationship between the measurements and the

quality variable (product concentration) is utilised by the

model such that measurement deviation that do not signify a

quality change are not marked as fault in the T2
f and score

plots. If quality variables are unavailable or it is believed

that any measurement deviation should be marked as a fault

a process model using PCA instead of PLS may be devel-

oped. Such a model will lead to the same type of fault

diagnosis plots.

The displayed ®gures are intended as process operator

tools to facilitate monitoring process performance. With

these tools operator attention can be directed mainly at

faulty processes instead of constantly watching all concur-

rently running processes.

As displayed here these data-driven methods are only

used for supervision and not directly for control. It will be a

relevant future step to develop an expert system that can be

used to interpret the score plots and automatically take

appropriate action when certain kinds of (known) faults

occur. Without any doubt, the described chemometrical

tools will lead to a higher utilisation of process data in

modelling, optimisation and control of complicated pro-

cesses because process chemometrics provide the process

industries with data handling methods that can utilise the

process knowledge contained in process data, which cur-

rently are obtained and stored for many processes.

Appendix A

Scalars and functions

A Number of components in the model.

I Number of batches.

J Number of variables.

K Number of samples within a batch.

mk Mean of the SPE.

tnew Score vector for a new batch.

vk Variance of the SPE.

T2
f Hotelling's T2 statistic for a future batch.

Kd(u) Multivariate kernel density function.

K(u) Univariate (Gaussian) kernel density function.

Matrices and vectors

B Regression matrix.

E Residual in modelling X.

F Residual in modelling Y.

F* Residual in modelling the regression Y � XB.

Fig. 7. Score plot for a well-behaved batch. The scores remain near the

point (0,0) suggesting that the product concentration will end on the

average value of the batches that where used to form the model.

Confidence limits are kernel density estimates.
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H Bandwidth matrix (diagonal) used for kernel

density estimation.

P X loading.

Q Y loading.

S Covariance matrix of the scores T.

T Score matrix for X.

U Score matrix for U.

W Normalised X Loading.

X Three-way data matrix (I � J � K).

X Unfolded data matrix (I � JK).

Xnew Unfolded data set for a new batch (1 � JK).

Y Quality variable (I � 1).

Ŷ Prediction of Y
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